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Encoder-Decoder

Encoder-Decoder Framework

𝑆𝑜𝑢𝑟𝑐𝑒 =< 𝑥*, 𝑥,, … 𝑥. >

𝑇𝑎𝑟𝑔𝑒𝑡 =< 𝑦*, 𝑦,, … 𝑦5 >

𝐶 = 𝐹(𝑥*, 𝑥*, … 𝑥.)

𝑦: = 𝑔(𝐶, 𝑦*, 𝑦,, … , 𝑦:;*)

𝑦* = 𝑓(𝐶)

𝑦, = 𝑓(𝐶, 𝑦*)

𝑦= = 𝑓(𝐶, 𝑦*, 𝑦,)

• When the sentence is short, context vector 

may retain some important information

• When the sentence is long, context vector 

will lose some information such as 

semantic.
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Soft-Attention
𝑦* = 𝑓(𝐶*)

𝑦, = 𝑓(𝐶,, 𝑦*)

𝑦= = 𝑓(𝐶=, 𝑦*, 𝑦,)

𝐶: =>
?@*

A
𝑎:?ℎ?



Core idea of Attention 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄𝑢𝑒𝑟𝑦, 𝑆𝑜𝑢𝑟𝑐𝑒 =>
:@*

A
𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑄𝑢𝑒𝑟𝑦, 𝐾𝑒𝑦: ∗ 𝑉𝑎𝑙𝑢𝑒:

𝐷𝑜𝑡: 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑄𝑢𝑒𝑟𝑦, 𝐾𝑒𝑦: = 𝑄𝑢𝑒𝑟𝑦 N 𝐾𝑒𝑦:

𝐶𝑜𝑠𝑖𝑛𝑒: 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑄𝑢𝑒𝑟𝑦, 𝐾𝑒𝑦: =
𝑄𝑢𝑒𝑟𝑦 N 𝐾𝑒𝑦:

| 𝑄𝑢𝑒𝑟𝑦 | N ||𝐾𝑒𝑦:||
𝑀𝐿𝑃: 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑄𝑢𝑒𝑟𝑦, 𝐾𝑒𝑦: = MLP(𝑄𝑢𝑒𝑟𝑦, 𝐾𝑒𝑦:)



Attention Timeline

2014
Recurrent Models
Of Visual attention

2014-2015
Attention in

Neural machine translation

2015-2016
Attention-based
RNN/CNN in NLP

2017
Self-Attention
(Transformer)
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Attention is all you need

Key words

• Transformer

• Faster

• Encoder-Decoder

• Scaled Dot-Product Attention

• Multi-Head Attention

• Position encoding

• Residual connections



A High-Level Look



Encoder-Decoder

1. The encoders are all identical in structure (yet they do not share weights). 
2. The encoder’s inputs first flow through a self-attention layer – a layer that 

helps the encoder look at other words in the input sentence as it encodes 
a specific word.

3. The outputs of the self-attention layer are fed to a feed-forward neural 
network. The exact same feed-forward network is independently applied 
to each position.

4. The decoder has both those layers, but between them is an attention 
layer that helps the decoder focus on relevant parts of the input sentence



Encoder Detail

1. Word embedding
2. Self-attention
3. FFNN

dependent

independent



Self-Attention High Level
As the model processes each word (each position in the input 
sequence), self attention allows it to look at other positions in 
the input sequence for clues that can help lead to a better 
encoding for this word.



Self-Attention in Detail

Query vector

Key vector

Value vector

Size of 512

Size of 64

The first step in calculating 
self-attention is to create 
three vectors from each of 
the encoder’s input vectors



Self-Attention in Detail
• The second step in 

calculating self-
attention is to 
calculate a score.

• The third and forth 
steps are to divide the 
scores by 8, then pass 
the result through a 
softmax operation.

• The fifth step is to 
multiply each value 
vector by the softmax 
score

• The sixth step is to 
sum up the weighted 
value vectors.

Scaled Dot-Product Attention



Self-Attention in Detail

The self-attention calculation in matrix form



Multi-head attention



Multi-head attention



Multi-head attention



Multi-head attention



Positional Encoding



The Residuals



Encoder-Decoder



Decoder



Linear and Softmax Layer



Transformer

Word embedding

FFNN output

Position embedding

Matrix

Q

K

V

Self attention: K=V=Q

Attention: K=V≠Q
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• Language model is a probability distribution over a 

sequences of words.

• N-Gram Models

• Uni-gram

• Bi-gram

• Tri-gram

• Neural network language models(NNLM)

Language model

𝑃 𝑤*,𝑤,,… ,𝑤. = 𝑝 𝑤* 𝑝 𝑤, 𝑤* 𝑝 𝑤= 𝑤*,𝑤, …



NNLM

𝑍Z = tanh(𝑊𝑥Z + 𝑝)
𝑦Z = 𝑈𝑧Z + 𝑞
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦Z)



NNLM and Word2Vec

Word2vec(2013)Neural probabilistic language model(2003)



Pre-training
• Word embedding

• Word2vec

• Glove

• FastText

• …

• Transfer learning



Outline
1. Encoder-Decoder

2. Attention

3. Transformer:《Attention is all you need》

4. Word embedding and pre-trained model

5. ELMo:《Deep contextualized word representations》

6. OpenAI GPT:《Improving Language Understanding by Generative Pre-Training》

7. BERT:《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》

8. Conclusion



Overview



ELMo
• ELMo (Embeddings from Language Models)
• complex characteristics of word use (syntax and 

semantics)
• across linguistic contexts (polysemy)

• Feature-Based
• ELMo representations are deep, in the sense that 

they are a function of all of the internal layers of the 
biLM.

• The higher-level LSTM states capture context-
dependent aspects of word meaning, while lower-
level states model aspects of syntax.



Bidirectional language models
• Forward language model

• Backward language model

• Jointly maximizes the log likelihood of the forward 
and backward directions

Token representation

Softmax layer

share some weights between directions instead of using completely independent parameters.



Embedding from language models
• ELMo is a task specific combination of the intermediate layer 

representations in the biLM.
• For k-th token, L-layer bi-directional Language models 

computes 2L+1 representations:

• For a specific down-stream task, ELMo would learn a weight
to combine these representations(In the simplest  just selects 
the top layer )



Embedding from language models



Using biLMs for supervised NLP tasks
• Concatenate the ELMo vector with initial word embedding 

and pass representation into the task RNN.

• Including ELMo at the output of the task RNN by introducing 
another set of output specific linear weights.

• Add a moderate amount of dropout to ELMo, in some cases to 
regularize the ELMo weights by adding               to the loss.



Experiment

1. Question answering
2. Textual entailment
3. Semantic role labeling
4. Coreference resolution
5. Named entity extraction
6. Sentiment analysis



ELMo
• Including representations from all layers improves overall 

performance over just using the last layer, and including 
contextual representations from the last layer improves 
performance over the baseline.

• A small λ is preferred in most cases with ELMo.
• Including ELMo at the output of the biRNN in task-specific 

architectures improves overall results for some tasks. but for 
SRL (and coreference resolution, not shown) performance is 
highest when it is included at just the input layer.

• The biLM is able to disambiguate both the part of speech and 
word sense in the source sentence.
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OpenAI GPT
• Generative Pre-trained Transformer
• Their goal is to learn a universal representation that transfers 

with little adaptation to a wide range of tasks.
• First, use a language modeling objective on the unlabeled data to 

learn the initial parameters of a neural network model.
• Second, adapt these parameters to a target task using the 

corresponding supervised objective.
• Highlight:
• Use transformer networks instead of LSTM to achieve 

better capture long-term linguistic structure
• Include auxiliary training objectives in addition to the task 

objective when fine-tuing.
• Demonstrate the effectiveness of the approach on a wide 

range of tasks(significantly improving upon the state of 
the art in 9 out of the 12 tasks studied)



Unsupervised pre-training
• Use a standard language modeling objective to maximize 

the following likelihood:

• A multi-layer transformer decoder for the language model

token embedding matrix
position embedding matrix

context vector of tokens

number of layers



Supervised fine-tuning
• The final transformer block`s activation is fed into an added 

linear output layer.

• Objective

• We additionally found that including language modeling as 
an auxiliary objective to the fine-tuning helped learning by 
(a) improving generalization of the supervised model, and 
(b) accelerating convergence.



Task specific input transformations

convert structured inputs into an ordered sequence that our pre-trained model can process.

ordered 
sentence 
pairs, or 
triplets of 
document, 
question, 
and answers.

$



ELMo vs OpenAI GPT
• ELMo generalizes traditional word embedding research 

along a different dimension. integrating contextual word 
embeddings with existing task-specific 
architectures.(feature based)

• OpenAI GPT is to pre-train some model architecture on a 
LM objective before fine-tuning that same model for a 
supervised downstream task.(fine tuning)
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BERT
• Bidirectional Encoder Representations from Transformers.
• Fine-tuning based
• New pre-training objective
• Masked language model (MLM)

• randomly masks some of the tokens from the input, 
predict the original vocabulary id of the masked 
word based only on its context.

• Next sentence prediction task
• Binarized (is or not)

• Pre-trained representations eliminate the needs of many 
heavily engineered task-specific architectures.

• BERT advances the state-of-the-art for 11 NLP tasks.



Model Architecture
• BERT’s model architecture is a multi-layer bidirectional 

Transformer encoder.
• L: number of layers 
• H: hidden size
• A: number of self-attention heads.

• Model
• BERTBASE : L=12, H=768, A=12, Total 

Parameters=110M(have an identical model size as OpenAI GPT for 
comparison purposes)

• BERTLARGE : L=24, H=1024, A=16, Total 
Parameters=340M

• Note:
• BERT: Bidirectional Transformer encoder
• OpenAI: Left-context-only Transformer decoder



Model Architecture

• BERT
• Uses a bidirectional transformer

• OpenAI GPT
• Uses a left-to-right transformer

• ELMo
• Uses the concatenation of independently trained left-to 

right and right-to-left LSTM



Input Representation
• For a given token, its input representation is constructed by 

summing the corresponding token, segment and position 
embeddings.

• CLS: Special classification embedding for classification tasks
• EA, EB: Sentence pairs are packed together into a single 

sequence. separate them with a special token ([SEP]).
• Learned positional embeddings



Tasks #1: Masked LM
• Definition: masking some percentage of the input tokens at 

random, and then predicting only those masked tokens.
• The final hidden vectors corresponding to the mask tokens 

are fed into an output softmax over the vocabulary, as in a 
standard LM.

• In practice: 15%
• Downsides:
• Mismatch between pre-training and finetuning, since the 

[MASK] token is never seen during fine-tuning.
• Only 15% of tokens are predicted in each batch, which 

suggests that more pre-training steps may be required for 
the model to converge.



Tasks #1: Masked LM
• Mismatch between pre-training and finetuning, since the 

[MASK] token is never seen during fine-tuning.
1. 80% of the time: Replace the word with the [MASK] token

• For training LM
2. 10% of the time: Replace the word with a random word

• For adding noise
3. 10% of the time: Keep the word unchanged

• For the true
• Only 15% of tokens are predicted in each batch, which 

suggests that more pre-training steps may be required for 
the model to converge.
• empirical improvements of the MLM model far outweigh 

the increased training cost.

my dog is hairy →my dog is [MASK]

my dog is hairy → my dog is apple

my dog is hairy → my dog is hairy



Tasks #2: Next Sentence Prediction
• In order to train a model that understands sentence 

relationships.
• Binarized next sentence prediction task
• Choosing the sentences A and B for each pretraining 

example, 50% of the time B is the actual next sentence that 
follows A, and 50% of the time it is a random sentence from 
the corpus.



Training
• The training loss is the sum of the mean masked LM 

likelihood and mean next sentence prediction likelihood.

• Training of BERTBASE was performed on 4 Cloud TPUs in Pod 
configuration (16 TPU chips total). 5 Training of BERTLARGE

was performed on 16 Cloud TPUs (64 TPU chips total). Each 
pretraining took 4 days to complete.



Fine-tuning Procedure
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BERT vs GPT vs ELMo

• Pre-trained language representations
• Feature based: ELMO
• Fine-tuning: OpenAI GPT、BERT

• Direction
• Unidirectional: Elmo、OpenAI GPT
• Bidirectional: BERT

• Pre-training objective
• Elmo、OpenAI GPT：Traditional language model
• BERT：masked language model、next sentence prediction



Conclusion

Word2vec
Restrict by window size

ELMo
Not real contextual

GPT
unidirectional

BERT
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If I forget any tutorial, please forgive me, Thanks a lot for all of the excellent materials.
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